If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9z^2-7z-2=0
a = 9; b = -7; c = -2;
Δ = b2-4ac
Δ = -72-4·9·(-2)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-11}{2*9}=\frac{-4}{18} =-2/9 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+11}{2*9}=\frac{18}{18} =1 $
| 3x+15=10x-6 | | -13=-7+y | | 6x+12=2x+3 | | 2.79=x.12 | | 7(3x-8)=28 | | 3(5x-1)+3(18-2x)-2(4x+5)=-3 | | 4=84/w | | (1.25x)+(0.5)=x-0.5 | | 0=-90x+1530 | | 78=-6a | | x^2+7=49 | | 8h-2=6h+3 | | 3x-15=×+3-4× | | 11/18=x-3,2/3 | | y=-900+1530 | | 15x=10x+300000 | | 2x/x-4=(8/x-4)+4 | | y=-360+1530 | | x/4+x/5=2 | | 14=7/8(q+3 | | y=-270+1530 | | 10c^-80c+160=0 | | 5y+24=19 | | 2(7-3)=3x-1 | | 20=6+7y | | -2v+3/5=5/3v-5/3 | | 14x-6x=24 | | (3x-5)x(2x+7)=0 | | .02(x-30)+.09(x+10)=3.6 | | -3(5p+2)-2(6-14p)-3(8+4p)=0 | | (k-7)-2=5 | | (3x-11)+(x+8)+x+(2x+7)+(x-8)=360 |